Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng-Wei Shi, Yi-Zhi Li, Ying Li, Guo-Yuan Lu* and Shan-Hui Liu

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.115$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$1,1^{\prime}, 8,8^{\prime}$-Tetramethoxy-10,10'-bianthrone

The title compound, 1, $1^{\prime}, 8,8^{\prime}$-tetramethoxy-9, 9^{\prime}-bianthracene$10,10^{\prime}\left(9 H, 9^{\prime} \mathrm{H}\right)$-dione, $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{6}$, was obtained by the reduction of 1,8 -dimethoxyanthraquinone with sodium borohydride and trifluoroacetic acid. In the anthrone dimers, the methoxy and carbonyl groups are attached to opposite sides of the anthracene rings. In the solid state, the molecule has a crystallographically imposed centre of symmetry located at the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the two anthracene systems.

Comment

Anthracenone derivatives have interesting biological activities, which enhance their potency with regard to their use as drugs (Müller et al., 1996, 1998, 2001; Prinz, Burgemeister \& Wiegrebe, 1996; Prinz, Wiegrebe \& Müller, 1996). Anthracenone derivatives are usually obtained by the reduction of anthraquinone derivatives. For example, 1,8-di-methoxy-10-anthrone is obtained by reduction with $\mathrm{LiAlH}_{4} /$ THF (THF is tetrahydrofuran) (Shyamasundar \& Caluwe, 1981), $\mathrm{SnCl}_{2} / \mathrm{HCl}$ (Müller \& Leukel, 1994) or $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} / \mathrm{DMF}$ (DMF is dimethylformamide) (Prinz, Burgemeister \& Wiegrebe, 1996; Prinz, Wiegrebe \& Müller, 1996). In these procedures, only one carbonyl group was reduced to methylene. Furthermore, Shyamasundar \& Caluwe (1981) reported that the reduction of 1,8 -dimethoxyanthraquinone with LiAlH_{4} led to the anthrone dimer (1), the minor reduction product, as well as 1,8 -dimethoxy- 10 -anthrone as the major product. In this dimer, the methoxy and carbonyl groups are on the same side of the anthracene ring.

Recently, we also obtained a dimer of 1,8-dimethoxy-10anthrone, during the reduction of 1,8-dimethoxyanthraquinone with sodium borohydride and trifluroacetic acid. The methoxy groups and the methine H atoms appeared at $\delta 3.64$ and 5.85 , respectively, in the ${ }^{1} \mathrm{H}$ NMR spectrum. Compared to Shyamasundar's dimer, (1), they were moved upfield by about $\delta 0.21$ and 0.40 . In order to explain these differences, the

Received 28 October 2004 Accepted 2 November 2004 Online 13 November 2004
crystal structure of the title compound, (I), has been determined; it is presented here.

In the crystal structure, (I) has a centre of symmetry located at the mid-point of the $\mathrm{C} 13-\mathrm{C} 13^{\mathrm{i}}$ bond of length 1.594 (3) \AA [symmetry code: (i) $-x,-y, 2-z$], which is longer than a normal single bond. The dimer adopts a less overlapped transoid conformation about the $\mathrm{C} 13-\mathrm{C} 13^{\mathrm{i}}$ bond (Fig. 1). Two methoxy and one carbonyl group are on different sides of the anthracene systems, corresponding to the dimer (I) rather than (1). The crystal packing (Fig. 2) is stabilized by van der Waals forces.

(I)

Experimental

The title anthrone dimer was prepared by reduction of 1,8 -dimethoxyanthraquinone with sodium borohydride and trifluroacetic acid. 8-Dimethoxyanthraquinone was prepared in our laboratory and the other reagents were commercially available and were used without further purification. $\mathrm{CF}_{3} \mathrm{COOH}(24 \mathrm{ml})$ was added dropwise with stirring to a solution of 1,8 -dimethoxyanthraquinone (4.0 mmol) in 10 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was then placed in an ice bath and $\mathrm{NaBH}_{4}(0.8 \mathrm{~g}, 21 \mathrm{mmol})$ was added in portions. The resulting mixture was stirred for 30 h at room temperature. The reaction mixture was poured into 200 ml ice-water. The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in

Figure 1
View of (I) with 30\% probability displacement ellipsoids [symmetry code: (i) $-x,-y, 2-z]$.

Figure 2
The crystal packing of (I), viewed down the a axis.
vacuo. The crude product was recrystallizaed from toluene twice to give the main product 1,8 -dimethoxy- 10 -anthrone (yield 83%). IR: $1657 \mathrm{~cm}^{-1}(\nu \mathrm{C}=\mathrm{O})$. MS (EI): $m / e=254\left(M^{+}, 100 \%\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{Mz}, \mathrm{CDCl}_{3}$): $\delta 7.99(d, J=7.90 \mathrm{~Hz}, 2 \mathrm{H}$, ArH in 4,5 -moiety), 7.43 ($d d$, $J 1=7.95, J 2=8.00 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ in 2, 7-moiety), $7.13(d, J=8.00 \mathrm{~Hz}$, 2 H , ArH in 3, 6-moiety), $4.10(s, 2 \mathrm{H}$, ArH2 in 9-moiety), $4.00(s, 6 \mathrm{H}$, $2 \times \mathrm{ArOCH}_{3}$). Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$: C 75.57, H 5.55%; found: C 75.46 , H 5.66%. The combined filtrates were concentrated until cloudiness appeared. Toluene was added and the clear solution was brought to room temperature. The white solid was filtered off and recrystallized once again from toluene to give white needle crystals of (I) (yield 4.5%, m.p. > 573 K). Single crystals suitable for X-ray crystallographic analysis were prepared by slow evaporation of a solution of (I) in chloroform-ethanol (2:1 v / v). MS (EI): $m / e=254$ $\left(M^{+} / 2+1,100 \%\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{Mz}, \mathrm{CDCl}_{3}\right): \delta 7.42(d, J=7.74 \mathrm{~Hz}$, 4 H , ArH in $4,4^{\prime}, 5,5^{\prime}$-moiety $), 7.31(d d, J 1=7.94, J 2=7.85 \mathrm{~Hz}, 4 \mathrm{H}$, ArH in $3,3^{\prime}, 6,6^{\prime}$-moiety), $6.88\left(d, J=8.00 \mathrm{~Hz}, 4 \mathrm{H}\right.$, ArH in $2,2^{\prime}, 7,7^{\prime}-$ moiety), 5.85 ($s, 2 \mathrm{H}, \mathrm{ArH}$ in $9,9^{\prime}$-moiety), $3.64\left(s, 12 \mathrm{H}, 4 \times \mathrm{ArOCH}_{3}\right)$. Analysis calculated for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{6}$: C 75.88 , $\mathrm{H} 5.17 \%$; found: C 75.95 , H 5.22\%.

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{6}$
$M_{r}=506.53$
Triclinic, $P \overline{1}$
$a=7.585$ (2) A
$b=8.443$ (2) \AA
$c=10.631(3) \AA$
$\alpha=67.801(4)^{\circ}$
$\beta=74.187(4)^{\circ}$
$\gamma=85.328(5)^{\circ}$
$V=606.3(3) \AA^{3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$
4784 measured reflections
$Z=1$
$D_{x}=1.387 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 523 reflections

$\theta=2.6-25.9^{\circ}$

$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, white
$0.32 \times 0.26 \times 0.24 \mathrm{~mm}$

> 2392 independent reflections
> 1381 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.048$
> $\theta_{\max }=26.0^{\circ}$
> $h=-8 \rightarrow 9$
> $k=-9 \rightarrow 10$
> $l=-11 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.115$
$S=1.01$
2392 reflections
173 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.04 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.038$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.027 (4)

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$, and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 90101018) and Science Foundation of JiangSu Province in China (grant No. BK2004085).

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Müller, K., Altmann, R. \& Prinz, H. (1998). Eur. J. Med. Chem. 33, 209-214.
Müller, K., Breu, K. \& Reindl, H. (2001). Eur. J. Med. Chem. 36, 179-184.
Müller, K., Huang, H-S. \& Wiegrebe, W. (1996). J. Med. Chem. 39, 31323128.

Müller, K., Leukel, P., Ziereis K. \& Gawlik I. (1994). J. Med. Chem. 37, 16601669.

Prinz, H., Burgemeister, T., Wiegrebe, W. (1996). J. Org. Chem. 61, 2857-2860. Prinz, H., Wiegrebe, W. \& Müller, K. (1996). J. Org. Chem. 61, 2853-2856. Shyamasundar, N. \& Caluwe, P. (1981). J. Org. Chem. 46, 1552-1557.

